Contents

1	Introduction 1
1.1	General 1
1.2	Scope2
1.3	Key features 3
2	Terms and definitions 4
3	Basic principles of earthquake-resistant design6
3.1	General 6
3.1.1	Performance-based design philosophy6
3.1.2	
3.1	.2.1 Damage-limitation limit state8
3.1	.2.2 Collapse-prevention limit state 8
3.1.3	
3.1	.3.1 Acceleration spectrum 9
3.1	.2.2 Elastic-displacement spectrum 11
3.1.4	Equivalent damping for hysteretic response12
3.1.5	Design concept13
3.1	.5.1 Force-based design 13
3.1	.5.2 Displacement-based design 15
3.2	The case of precasting 19
3.2.1	Performance-based design philosophy19
3.2.2	2 Connections 20
3.2.3	B Ductility properties of structures 21
3.2.4	4 Supports 24
3.2.5	5 Second-order effects 26
3.2.6	6 Cladding-panel connections 26
3.2.7	7 Shear failure 27
3.2.8	B Design of diaphragms 27
3.2.9	Stability of beams supported on columns 28
3.2.1	0 / 1
3.3	Basic principles of conceptual design (to satisfy the fundamental require-
	ments of collapse avoidance and damage limitation) 31
3.3.1	General 31
3.3.2	2 Basic principles of conceptual design
3.3	3.2.1 Structural simplicity
3.3	3.2.2 In-plan uniformity - regularity
3.3	3.2.3 Vertical uniformity - regularity 35
3.3	Bidirectional resistance, torsional resistance and stiffness39

3.3	.2.5	Effects of the contribution of infills, partitions and cladding (strong beam- weak column)
3.3	.2.6	Adequacy of foundation
4	Precas	st-building systems
4.1	Gene	eral
5	Frame	e systems
5.1	Gene	,
5.2	Fram	es with hinged beam-to-column connections and HCF (cantilevered- nn system in ASCE 7-10)
5.2.1		ged beam-to-column connections for HCF
5.3	Fram	es with moment-resisting columns
5.3.1	Ger	neral
5.3.2	Equ	ivalent monolithic moment-resisting beam-to-column connection systems
	.2.1	System SI
	.2.2	System S2
	.2.3	System S3
	.2.4	System S4
	.2.5	System S5
	.2.6	System S6
	.2.7	System S7
5.3.3		neral information on jointed systems (H1, H2 and H3)
5.3.4		umn-to-foundation connections
	.4.1 .4.2	Socket foundation Column-to-foundation connections with corrugated-metal ducts or steel
).)	.4.2	sleeves
5.3	.4.3	Column-to-foundation connections with anchor bolts
	.4.4	Column-to-foundation connections with steel base plates
5.3	.4.5	Column-to-foundation connections with external mild-steel reinforce- ment
5.3.5	Bea	m-to-column connections
5.3.6	Col	umn-to-column connections
6	Large-	-panel wall systems
6.1	Gene	eral
6.2	Class	ification
6.3	Seism	nic behaviour and structural integrity or robustness
6.4		ble mechanisms for dissipation of seismic energy

6.5	Load effects in large-panel connections	. 145	
6.6	Configuration and structural behaviour of wet joints made with cast-in-		
	situ concrete and loop reinforcements	147	
6.7	Construction details for large-panel buildings with wet joints (concrete		
	and reinforcement)	. 152	
6.8	Configuration and structural behaviour of North American platform-		
	framing connections		
6.8.1	Horizontal connections		
6.8.2	Vertical-shear wall-to-wall connections	159	
6.8.3	Structural integrity		
6.8.4	Further information about ties, based on Schultz, 1979		
7	Wall-frame systems (dual systems)	165	
7.1	General	165	
7.2	Shear walls and moment frames in dual systems	165	
7.3	Typical connections in structural wall systems		
8 F	loor-framing systems	173	
8.1	General		
8.2	Aspects of diaphragm behaviour in precast-floor systems		
8.2.1	Diaphragms with topping		
8.2.2			
8.2.3			
8.2.4	Internal diaphragm actions		
8.2.5	Behaviour of precast-floor diaphragms under seismic action		
8.3	Displacement incompatibility issues between lateral-resisting systems		
0.5	and precast-floor diaphragms	183	
8.3.1	General		
8.3.2	Strength enhancement of beams due to interaction with precast floors		
8.3.3	Other examples of displacement incompatibility effects		
8.3.4	Design guidelines for hollow-core-floor-to-lateral-resisting-system connec-	107	
	tions	191	
8.3.5	Support length of precast-floor units for prevention of unseating in seismic		
	situations		
8.4	Controlling and reducing damage to floor diaphragm		
8.4.1	Jointed, 'articulated' floor system		
8.4.2	Top-hinge and slotted solution		
9	Double-wall systems	203	
9.1	General		

9.2	On-site construction technique	204
9.3	Ductile behaviour	
9.4	Numerical models for structural analysis	205
9.5	Structural connections and other structural details	206
10	Precast-cell systems	213
10.1	General	213
10.2	Classification	214
10.3	Construction aspects	
10.4	Connections	. 219
10.5	Box structures in the United States	
Apper	ndix A: Structural ductility of precast-frame systems	223
A .1	Local ductility	223
A .2	Global ductility	
A .3	One-storey frames	
A .4	Other types of ductility	. 229
Apper	ndix B: Selected technical data	230
B .1	General	230
B .2	Ductility-dissipation relation	231
B .3	Standard values	_ 232
Apper	ndix C: Design examples of one-storey industrial building	234
C .1	General	234
C.1.1	Prototype one-storey industrial building	
C.1.2	Seismic hazard and spectra	236
C .2	Iterative force-based design (FBD) of one-storey industrial building at	
	ULS (collapse prevention)	238
C.2.1		
C.2.2		
C.2.3		240
C.2.4 C.2.5		241
C.2.6	1 0 0	
0.2.0	and oft-neglected q factor	_ 243
C.2.7		245
C.2.8		247
C .3	Iterative force-based design (FBD) of one-storey industrial building at	1/

	SLS (damage limitation)	250
C .4	Closed-form force-based design (CFBD) of one-storey industrial building	
	for ULS (collapse prevention)	252
C.4.1	Step 1: Determining yield deflection of structure	252
C.4.2	Step 2: Determining feasible design solutions using strength-stiffness compati- bility-domain curve	253
C.4.3	Step 3: Determining design seismic base shear and verifying sensitivity coefficient	254
C .5	Closed-form force-based design (CFBD) of one-storey industrial building	
	for SLS (damage limitation)	256
C .6	Displacement-based design (DBD) of one-storey industrial building	
	for ULS (collapse prevention)	258
C.6.1	Step 1: Equivalent SDOF system	258
C.6.2	Step 2: Setting ultimate (target) displacement and calculating yielding displace-	
	ment, ductility and equivalent viscous damping	259
C.6.3	Step 3: Entering displacement spectrum and evaluating effective period and stiffness (secant to target displacement)	260
C .7	Displacement-based design (DBD) of one-storey industrial building	
	for SLS (damage limitation)	262
C.7.1	Step 1: Equivalent SDOF building	262
C.7.2	Step 2: Setting ultimate (target) displacement and calculating yielding displace- ment, ductility and equivalent viscous damping	262
C.7.3	Step 3: Entering displacement spectrum and evaluating effective period and stiffness (secant to target displacement)	263
C .8	Comparison of FBD, closed-form FBD and DBD	264
Refere	nces	265