Table of contents

Foreword		i	
Glossary	of acronyms and abbreviations	vi	
1. The	state-of-the-art in FEM-based approaches for the		
	ign of FRC Structures	1	
1.1 Intro		1	
1.2 Cha	1.2 Chapter 2 on Models for Material Scale		
	1.3 Chapter 3 on FEM- and member-based approaches for the an		
	and design of FRC		
	1.4 Chapter 4 – Numerical Models for simulating the loading		
rate-	rate-dependent behaviour of FRC structures		
1.5 Cha	pter 5 - Strategies for assessing the values of the		
rele	vant parameters of design-oriented models	5	
1.6 Cha	pter 6 - Structural analysis of FRC structures: blind		
pred	lictions and applications	5	
2. Mod	dels for Material Scale	8	
2.1 Intro	2.1 Introduction		
2.2.	Modelling of fracture and fibre bridging effect	8	
2.2.1	Modelling methodologies	8	
2.2.2	Cohesive/fictitious crack model	9	
2.2.3	Crack band model	11	
2.2.4	Modelling based on multiscale approach	12	
2.2.5	Shear and mixed-mode	22	
2.2.6	Compression	26	
2.2.7	Bi-phase type models	28	
2.2.8	The Lattice Discrete Particle Model (LDPM)	30	
2.2.9	Probabilistic numerical model of cracking process of fibre reinforced concrete structures	35	
2.3 Mod	2.3 Models of creep, cyclic and fatigue behaviour		
2.3.1			
2.3.2	Cyclic behaviour and fatigue	41	
2.3.3	Behaviour at high loading rates	45	
2.4 Dura	2.4 Durability related models		

2.5 Evaluation of fibre dispersion state in fibre-reinforced					
	ceme	ent-based composites (FRCCs)	47		
	2.5.1	Fibre orientation – effective factors – classification of materials	47		
	2.5.2	Mathematical description of fibre orientation by using			
		analytical and experimental methods	48		
	2.5.3	Models of fresh FRC mix flow	52		
3	. FEM	I- and member-based approaches for the analysis			
	and	design of FRC structures	72		
	3.1 Intro	duction	72		
	3.2.	Crack models: similarities and differences from a			
		conceptual viewpoint and extension to FRC	73		
	3.2.1	Approaches for modelling cracking process in cement-based materials	73		
	3.2.2.	The cohesive crack model	74		
	3.2.3	Crack band models and smeared cracks	76		
	3.2.4	Embedding a crack in a uniaxial finite element	76		
	3.3 Sme	ared crack and damage plasticity models	78		
	3.3.1	General concepts	78		
	3.3.2	Modelling the fracture propagation	80		
	3.3.3	Relevant aspects of the formulations and discussion	88		
	3.4 Disci	ete approaches for modelling the process of cracking	95		
	3.4.1	Available approaches for fracture	95		
	3.4.2	Interface crack elements - Multilevel model for fibre reinforced concrete	98		
	3.4.3	Finite elements with embedded discontinuities to			
		simulate fibre reinforced concrete	102		
	3.5 Mesh	n objectivity	105		
	3.6 Analy	ysis at serviceability limit state conditions	108		
	3.6.1	Introduction	108		
	3.6.2	Crack width estimation for smeared crack models	109		
	3.6.3	Structural deflection and stress level in reinforcements	110		
	3.7 Analy	ysis at ultimate limit state conditions	112		
	3.7.1	Load carrying capacity, deformation performance and failure modes	: 112		
	3.8 Design	gn methodology	114		
	3.8.1	Introduction	114		
	3.8.2	Global resistance methods for material nonlinear finite	و ما م		
	0.00	element analysis	114		
	3.8.3	Application example	116		

	3.9.	Models at cross section level for member design	118
	3.9.1	Introduction	118
	3.9.2	FRC elements failing in bending	118
	3.9.3	FRC elements failing in shear	121
	Nomencl	ature	123
	Annex A	3.1 – Mesh objectivity	139
4	. Num	erical models for simulating the loading	
		dependent behaviour of FRC structures	142
	4.1 Introd	•	142
	4.2 Bene	fits of fibre addition: experimental evidence	143
	4.2.1	Strain rate effect observed in single fibre pull-out tests	143
	4.2.2	Strain rate effect observed in dynamic bending tests	144
	4.2.3	Strain rate effect observed in dynamic tensile tests	145
	4.2.4	Strain rate effect observed under explosive loading	146
	4.3 Mode	els on strain rate effects of fibre-matrix bond mechanisms	147
	4.3.1	Rate-independent formulation	147
	4.3.2	Rate-effect model	148
	4.3.3	Rate-dependent friction model	148
	4.3.4	Other rate-effect models	151
	4.4 Rate-dependent models based on the Implicit Fibre		
	Reinf	orcement Approach (IFRA)	151
	4.4.1	Riedel-Hiermaier-Thoma model	152
	4.4.2	Other material models implemented in commercial software	158
	4.4.3	A meshfree approach endorsed with cohesive theories of fracture	158
	4.5 Rate-	dependent models based on the Explicit Fibre	
	Reinf	orcement Approach (EFRA)	159
	4.5.1	Models implemented in conventional finite element methods	159
	4.5.2	Particle models with explicit fibres and accounting for strain-rate effects	160
	4.6 Conc	lusions and recommendations for model application	164
	Nome	enclature	165
5	. Strat	egies for assessing the values of the relevant	
		meters of design-oriented models	174
	5.1.	Introduction	174
	5.2.	Fibre pull-out constitutive laws	174
	_	Experimental assessment	174
		Inverse analysis	177

5.3	ation of fracture parameters	177	
5	.3.1	Crack opening process	177
5	.3.2	Crack sliding process	197
5.4	Tools 1	for evaluating fibre dispersion state in fibre-reinforced	
		nt-based composites	200
5	.4.1	Destructive methods	200
5	.4.2	Non-destructive methods	202
5.5	Concl	uding remarks	204
6.		tural analysis of FRC structures: blind	
0.		ctions and applications	213
6.1	•	• •	213
_	6.1 Introduction		
		simulation competitions (BSCs)	214
_		Context	214
		1st BSC – R/SFRC beams failing in shear	214
		2 nd BSC – Continuous shallow R/SFRC beams failing in bending	219
	•	sis of a precast SFRC tunnel segment up to failure	223
_	_	Context	223
		Characterisation of the material and SFRC properties	224
		Experimental results of a tunnel lining segment flexural test	226
		Numerical results from the discrete Multi-Level FRC model	227
		Numerical results with a smeared crack model	229
		Mesh objectivity analysis for the discrete Multi-Level FRC model	231
6		Comparison with simplified stress-crack opening laws from fib Model Code 2010	233
6.4	2	essed grandstand reinforced with synthetic macro fibres	235
		Context	235
		Fibre reinforced concrete mixture	236
		Relevant aspects of the design approach and model parameters	236
			240
		ted steel fibre reinforced concrete (E-SFRC) slabs Context	
	_	Modelling and design aspects	240 241
			241
		Relevant results and analysis Mesh study	250
		•	
		$\sigma^{FRC}(w)$ for SCM	255
		$0.2 - Determination of \sigma^{FRC}(w)$ for SCM	257
Anr	nex 6A	.3 – Determination of $\sigma^{FRC}(w)$ for the discrete	<u> </u>
		Multi-Level FRC Model	259